FLAVONOIDS FROM Pegaeophyton scapiflorum

Zi-yan Li,^{1,2} Xiao-dong Yang,^{1*} Zhi-rong Ma,¹ Jing-feng Zhao,¹ Hong-bin Zhang,¹ and Liang Li^{1*}

UDC 547.972

The genus *Pegaeophyton* (Brassicaceae) is represented by only one specie in China, mostly growing in the southwestern part of the country on mountains 3500 meters above sea level or higher [1]. *P. scapiflorum* Marq. Et. Shaw. is used in Tibetan folkloric medicine for the treatment of fever and food poisoning [2]. To the best of our knowledge, no scientific study on this plant has hitherto been reported.

The dried whole plants of *P. scapilorum* (8.0 kg) were collected in Shangrila, southwestern China, in September 2001, and extracted with 75% ethanol ($20 L \times 4$) at room temperature for 20 days. The alcohol extract was evaporated in vacuum at 50° C. The condensed solution was diluted with water and successively treated with chloroform and *n*-butanol.

The chloroform extract (170 g) was subjected to silica gel column chromatography. The column was continuously eluted with a methanol gradient in chloroform and fractions (1–9) were collected. Fraction 7 was purified by polyamide column chromatography and eluted with chloroform—methanol (40:1 \rightarrow 0:1) to yield compounds 1 (3.6 g) and 2 (1.2 g).

The *n*-butanol extract (100 g) was purified by silica gel column chromatography and eluted with a methanol gradient in chloroform to afford fractions (1–6). Fraction 3 was chromatographed over a polyamide column and eluted with chloroform—methanol—water (8:1:0.1 \rightarrow 1:1:0.2) to isolate and purify compounds 3 (130 mg), 4 (200 mg), and 5 (85 mg). These compounds were identified using UV, IR, MS, and NMR spectra and by comparison with reported spectral data in the literature.

Apigenin (1), $C_{15}H_{10}O_5$, mp 338–340°C. UV spectrum (MeOH, λ_{max} , nm): 268, 335. Mass spectrum (EI, 70 eV, m/z): 270 [M]⁺, 242, 153, 121, 69. ¹H NMR (DMSO-d₆, 300 MHz, δ, ppm, J/Hz): 12.88 (1H, 5-OH), 7.94 (2H, d, J = 9, H-2′, 6′), 6.98 (2H, d, J = 9, H-3′, 5′), 6.74 (1H, s, H-3), 6.54 (1H, d, J = 2, H-8), 6.25 (1H, d, J = 2, H-6) [3].

Tricin (2), $C_{17}H_{14}O_7$, mp 291–292°C. UV spectrum (MeOH, λ_{max} , nm): 243, 266, 352. Nagative FAB-MS spectrum (70 eV): m/z 329 [M-1]⁻, 314, 300, 286, 259, 167, 151, 135, 109, 69. ¹H NMR (DMSO-d₆, 300 MHz, δ, ppm, J/Hz): 12.64 (1H, 5-OH), 7.53 (2H, s, H-2', 6'), 6.88 (1H, s, H-3), 6.52 (1H, d, J = 2.0, H-8), 6.23 (1H, d, J = 2.0, H-6), 3.94 (6H, s, OCH₃) [4].

Tricin-7-*O*-β-**D-glucopyranoside** (3), $C_{23}H_{24}O_{12}$, mp 240–241°C. UV spectrum (MeOH, λ_{max} , nm): 244, 266, 350. Nagative FAB-MS spectrum (70 eV): m/z 491 [M-1]⁻, 329, 314, 300, 259, 167, 135, 109, 69. ¹H NMR (DMSO-d₆, 300 MHz, δ, ppm, J/Hz): 12.60 (1H, 5-OH), 7.52 (2H, s, H-2', 6'), 6.85 (1H, s, H-3), 6.91 (1H, d, J = 1.9, H-8), 6.44 (1H, d, J = 1.9, H-6), 5.02 (1H, d, J = 7.4, glc-1), 3.90 (6H, s, OCH₃), 3.20–3.81 (m, glucose protons) [5].

Luteolin (4), $C_{15}H_{10}O_6$, mp 328–330°C. UV spectrum (MeOH, $λ_{max}$, nm): 260, 274, 356. Nagative FAB-MS spectrum (70 eV): m/z 285 [M-1]⁻, 253, 223, 184, 165, 127. ¹H NMR (DMSO-d₆, 300 MHz, δ, ppm, J/Hz): 12.97 (1H, s, 5-OH), 7.42 (1H, dd, J = 8.1, J = 2.0, H-6'), 7.40 (1H, d, J = 2.0, H-2'), 6.87 (1H, d, J = 8.1, H-5'), 6.68 (1H, s, H-3), 6.43 (1H, s, H-8), 6.17 (1H, s, H-6) [6].

Kaempferol-3-*O*-β**-D-glucopyranoside** (5), $C_{21}H_{20}O_{11}$, mp 245–246°C. UV spectrum (MeOH, λ_{max} , nm): 268, 300, 312. Nagative FAB-MS spectrum (70 eV): m/z 447 [M-1]⁻, 339, 297, 284, 255, 239, 223, 211, 188, 166, 119, 77. ¹H NMR (DMSO-d₆, 300 MHz, δ, ppm, J/Hz): 12.63 (1H, s, 5-OH), 8.05 (2H, dd, J = 12.0, J = 2.8, H-2′, 6′), 6.89 (2H, dd, J = 12.0, 2.8, H-3′,5′), 6.42 (1H, d, J = 2.0, H-8), 6.20 (1H, d, J = 2.0, H-6), 5.54 (1H, d, J = 7.6, glc-1), 3.35–3.80 (m, glucose protons) [7].

¹⁾ Key Laboratory of Natural Resources and Pharmaceutical Chemistry (Yunnan University), Ministry of Education, School of Chemical Science and Teleology, Yunnan UniversityKunming 650091, P. R. China, fax: 86-871-5035538, e-mail: xdyang120@hotmail.com; 2) School of Environmental Science and Engineerin, Kunming University of Science and Technology, Kunming 650093, P. R.China. Published in Khimiya Prirodnykh Soedinenii, No. 6, p. 597, November-December, 2006. Original article submitted November 9, 2005.

ACKNOWLEDGMENT

This work were supported by the Natural Science Foundation of Yunnan Province (No. 2005B0001Q) and Natural Science Foundation of Yunnan University (No. 2003Q010A), which are gratefully acknowledged.

REFERENCES

- 1. Institute of Botany, Chinese Academy of Sciences, *Flora Reipublicae Popularis Sinicae*, Science Press, Beijing, 1987, Vol. **33**, 242 p.
- 2. Yunnan Medicinal Material Company, *Index Chinese Medicines Resources Yunnanensis*, Science Press, Beijing, 1993, 199 pp.
- 3. S. J. Li, Y. Y. Zhao, and X. L. Li, Acta Pharm. Sinica, 31, 849 (1996).
- 4. J. Bhattacharyya, D. Stagg, and N. V. Mody, J. Pharm. Sci., 67, 1325 (1978).
- 5. Y. Hirai, S. Sanada, and Y. Ida, Chem. Pharm. Bull, 34, 82 (1986).
- 6. A. M. He and M. S. Wang, *Zhong Cao Yao (Chinese)*, **28**, 517 (1997).
- 7. K. R. Markham, B. Ternal, and R. Stanley, *Tetrahedron*, 34, 1389 (1978).